

Please write clearly	in block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

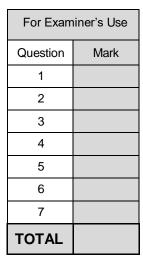
GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Chemistry Paper 2F

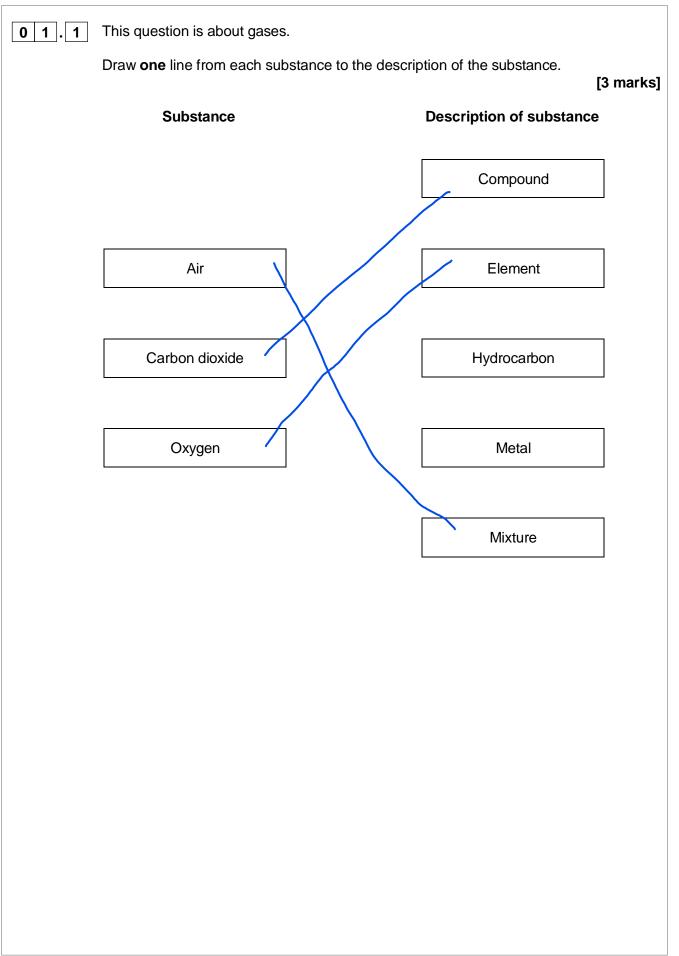
Wednesday 12 June 2019 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:


- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions


- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- · The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1.2	What is used to test for each	ch of the gases?		
	Draw one line from each ga	as to the test for the ga	IS.	[2 marks]
	Gas		Test	
			A glowing splint	
	Carbon dioxide		A lighted splint	
	Oxygen		Limewater	
			Litmus paper	
0 1.3	Give two reasons why the decreased in the last 2.7 bit Tick (✓) two boxes.		dioxide in the air has	[2 marks]
	Combustion			
	Dissolved in oceans			
	Intense volcanic activity			
	Photosynthesis			
	Respiration			

	Oxygen reacts with sulfur dioxide.		
	The reaction is reversible.		
0 1.4	What is the symbol for a reversible reaction?	[1 mark]	
0 1.5	Complete the sentence.	[1 mark]	
	In a reversible reaction the forward reaction is exothermic, so the		
	reverse reaction is <u>endothermic</u> .		
0 1.6	A reversible reaction happens in apparatus which stops the escape of reactar and products.	nts	
	Complete the sentence.	[1 mark]	ı
		•	
	Equilibrium is reached when the forward and reverse reactions happen at		
	exactly the same <u>rate</u> .		

Turn over ▶

Do not write outside the box

0 2	Concrete contains cement, water, sand and small stones.	
0 2 . 1	Concrete is a mixture designed as a useful product.	
	What do we call a mixture which has been designed as a useful product?	[1 mark]
	Tick (✓) one box.	[Timal K]
	Finite	
	Formula	
	Formulation	
	Fraction	
0 2.2	Concrete contains cement.	
	Cement is made by heating a mixture containing silicon dioxide (SiO ₂).	
	Why does silicon dioxide have a very high melting point?	FO
	Tick (✓) two boxes.	[2 marks]
	It has a giant structure	
	It has a simple molecular structure	
	It has strong covalent bonds	
	It has strong ionic bonds	
	It has weak intermolecular forces	

Student **A** investigated how the mass of the small stones in concrete affects the strength of a concrete beam. All other variables were kept the same.

The student added weights until the concrete beam broke.

Figure 1 shows the apparatus Student A used.

Figure 1

Concrete beam

Weights

Type of variable

Control

Control

Time taken to add weights

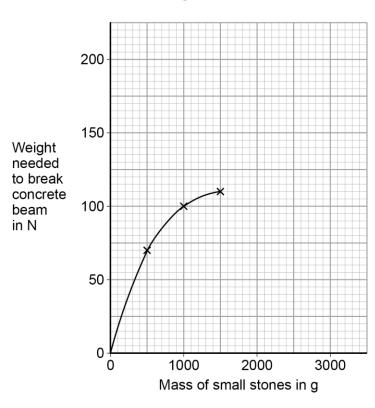
Meight needed to break concrete beam

Weight needed to break concrete beam

Table 1 shows Student A's results.

Table 1

Mass of small stones in grams (g)	Weight needed to break concrete beam in newtons (N)
500	70
1000	100
1500	110
2000	100
2250	85
2500	65
2750	35


0 2 . 4 Plot the data from Table 1 on Figure 2.

The first three points are plotted for you.

Draw the line of best fit.

[3 marks]

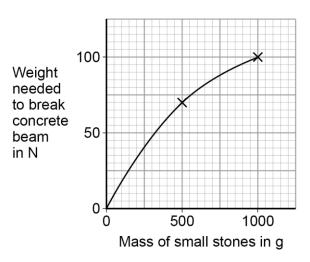
Figure 2

0 2 . 5 What mass of small stones would be needed to make the strongest concrete?

Give a reason for your answer.

Use Figure 2.

[2 marks]


Mass = 1500 (g) g

Reason highest point on graph

0 2 . 6 Student **B** did a similar investigation.

Figure 3 shows Student B's results.

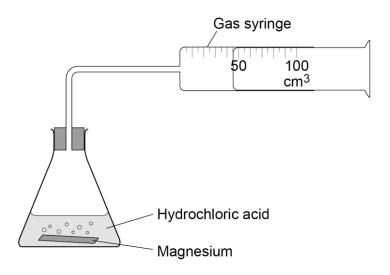
Figure 3

How could Student **B** improve their investigation?

Use Figure 2 and Figure 3.

[1 mark]

take more measurements



0 3

A student investigated the rate of the reaction between magnesium and hydrochloric acid.

Figure 4 shows the apparatus the student used.

Figure 4

0 3

Balance the equation for the reaction.

[1 mark]

$$Mg + \bigcirc HCl \rightarrow MgCl_2 + H_2$$

0 3

The student used 50 cm³ of hydrochloric acid.

Which apparatus would measure 50 cm³ of hydrochloric acid with the greatest accuracy?

[1 mark]

Tick (✓) one box.

50 cm³ beaker

50 cm3 conical flask

50 cm³ measuring cylinder

0 3 . 3 The student measured the volume of gas produced every 20 seconds for 2 minutes.

The volume of gas was zero at the start of the experiment.

The measured volumes of gas were:

26 cm³

38 cm³

47 cm³

55 cm³

59 cm³

60 cm³

Complete Table 2 to show these results.

[4 marks]

Table 2

Time (s)	Volume (cm3)
0	0
20	26
40	38
60	47
80	55
100	59
120	60

0 3 The volumes of gas were lower than expected.

Suggest **one** reason.

[1 mark]

some (gas) escaped

0 3

The student repeated the experiment using different concentrations of hydrochloric acid.

Give **two** variables the student should keep the same.

[2 marks]

1 surface area of magnesium

volume of acid

Do not write outside the

0 3 . 6	Complete the sentences.	[3 marks]	
	As the concentration of the hydrochloric acid rate of the reaction <u>increased</u>	increased, the	
	This is because there were more acid cubic centimetre (cm³).	particles	in each
	So the collisions happened more frequently	/	

0	4

Large hydrocarbon molecules can be cracked to produce smaller, more useful molecules.

Alkanes and alkenes are produced when hydrocarbons are cracked.

Give two conditions used for cracking.

[2 marks]

- 1 <u>high temperature</u>
- 2 <u>catalyst OR steam</u>

0 4 7

Butane (C_4H_{10}) is an alkane.

Figure 5 shows part of the displayed structural formula of butane.

Complete the displayed structural formula of butane in Figure 5.

[1 mark]

Figure 5

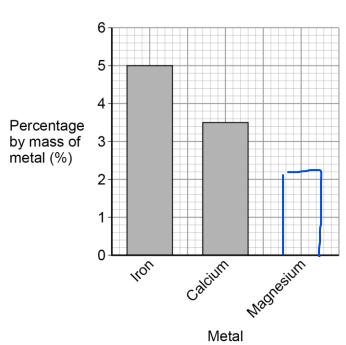
Butane burns in oxygen.

Complete the word equation for the complete combustion of butane.

[2 marks]

butane + oxygen → Carbon dioxide + ____ + ___

Question 4 continues on the next page



0 4 . 4	Ethene is an alkene.	
	Give a test for alkenes.	
	Give the result of the test if an alkene is present. [2 marks]	
	Test bromine (water)	
	Resultturns from orange / brown / yellow to colourless	
0 4.5	Each year many tonnes of crude oil are extracted from the Earth.	
	It took millions of years for the crude oil to be formed.	
	What do we call development that meets the needs of current generations without compromising the resources for future generations?	
	[1 mark] Tick (✓) one box.	
	Finite development	
	Global development	
	Natural development	
	Sustainable development	

0 5 Figure 6 shows the percentage by mass of some metals in the Earth's crust.

0 5 . 1 What is the percentage by mass of calcium in the Earth's crust?

[1 mark]

Tick (\checkmark) one box.

3.25%

3.50%

Draw the bar for magnesium on Figure 6.

The percentage by mass of magnesium in the Earth's crust is 2.1%

4.50%

5.00%

[1 mark]

Question 5 continues on the next page

Turn over ▶

0 | 5

0	5	3
•	٠.	. J

Copper sulfate is produced during the extraction of copper from the Earth's crust.

Copper is produced from copper sulfate solution using iron.

The word equation for the reaction is:

copper sulfate + iron \rightarrow iron sulfate + copper

From the equation a company calculated that 648 kg of copper sulfate are needed to produce 617 kg of iron sulfate and 258 kg of copper.

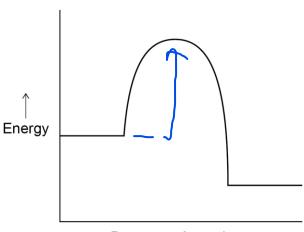
Calculate the mass of iron needed to make 258 kg of copper.

[2 marks]

$$(617 + 258) - 648$$

$$875 - 648 = 227 \text{ (kg)}$$

Mass = ____ kg


Copper is used as a catalyst.

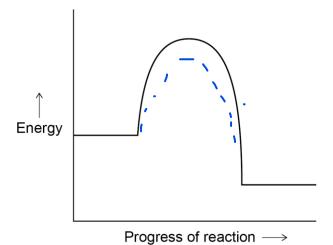
0 5

4

Figure 7 shows the reaction profile for a reaction without a catalyst.

Figure 7

Progress of reaction \longrightarrow


Draw an arrow on **Figure 7** to show the activation energy.

[1 mark]

0 5 . 5

The reaction profile for the reaction without a catalyst is shown again in Figure 8.

Figure 8

Draw a reaction profile on Figure 8 for the same reaction with a catalyst.

[2 marks]

0 5 6	What are catalysts in biolog	gical systems called?	[4 mark]	Do not write outside the box
	Tick (✓) one box.		[1 mark]	
	Detergents			
	Enzymes			
	Polymers			
	Solvents			
				8

	13
0 6	Water that is safe to drink contains dissolved substances.
0 6 . 1	What do we call water that is safe to drink? [1 mark]
1 1	Tick (✓) one box.
	Desalinated
	Filtered
	Fresh
	Potable
0 6 . 2	Describe a test for pure water.
	Give the result of the test if the water is pure. [2 marks]
l	Test boil water
	Result Pure boils at 100°C
	Question 6 continues on the next page

Do not write outside the

0 6 . 3	Describe a method to determine the mass of dissolved solids in a 100 cm ³ sample of river water.	
		[4 marks]
	weigh container.	
	• measure volume (100 cm3) of water into container.	
	• evaporate / heat until dry.	
	weigh container and remaining solids.	
	determine mass of dissolved solids	
0 6.4	A sample of river water contains 125 mg per dm ³ of dissolved solids.	
	Calculate the mass of dissolved solids in grams in 250 cm³ of this sample of river water.	
	Give your answer to 2 significant figures.	[4 marks]
	(conversion of cm3 to dm3) (250 cm3 =) 250 /1000	
	= 0.25 (dm3)	
	(conversion of mg to g)	
	(125 mg =) 125/1000 = 0.125 (g)	
	$(0.25 \times 0.125) = 0.03125$	
	=0.031 (g)	
	Mass of dissolved solids =	g

0 | 6 . 5

A water company allows a maximum of 500 mg per dm³ of sulfate ions in drinking water.

A sample of drinking water contains 44 mg per dm³ of sulfate ions.

Calculate the percentage (%) of the maximum allowed mass of sulfate ions in the sample of drinking water.

[2 marks]

44/500 ×100

= 8.8 (%)

13

Turn over for the next question

0 7	This question is about atmospheric pollutants from fuels.				
0 7.1	Fuel burns in a car engine.				
	Describe how oxides of nitrogen are produced in a car engine.	[2 marks]			
	High temperatures in the engine enable oxygen and nitrogen				
	from air to react				

0 7 . 2

Table 3 shows the carbon footprint during the manufacture and use of three cars.

Table 3

Car	Mass of CO₂ produced during manufacture in kg	Mass of CO₂ produced when driving in kg per km	Total mass of CO ₂ produced from manufacture and 40 000 km driving in kg	Total mass of CO ₂ produced from manufacture and 100 000 km driving in kg
Car A	14 000	0.123	18 920	26 300
Car B	20 000	0.085	23 400	28 500
Car C	23 000	0.044	24 760	27 400

Evaluate the carbon footprint of the cars.

Use information from Table 3.

[6 marks]

Examples of relevant points might include:

- car C produces the most CO2 during manufacture
- car A produces the most CO2 per km when driving
- car C produces the most CO2 from manufacture and 40,000km when driving
- car B produces the most CO2 from manufacture and 100,000km when driving

Examples of linked statements might include:

- car A produces least CO2 during manufacture, but most CO2 per km
- car C produces most CO2 during manufacture, but least CO2 per km
- car A produces least CO2 during manufacture, but car C produces the least CO2 per km

Examples of judgements might include:

overall car A has the smallest carbon footprint as it has the smallest CO2 production during manufacture, the smallest mass of CO2 after 40,000km of driving and the smallest mass of CO2 produced after 100,000km of driving.
 car A eventually (after 157,895km) will have the largest carbon footprint because the mass of carbon dioxide produced per km is highest.

END OF QUESTIONS

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/Jun19/8464/C/2F

Do not write outside the

box