

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			_
Forename(s)			
Candidate signature			

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

Thursday 16 May 2019 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

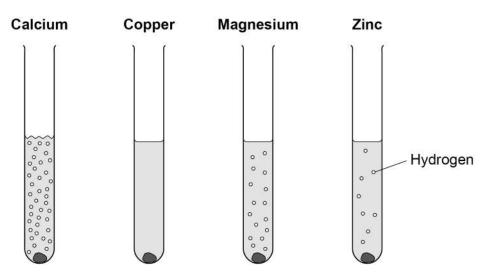
- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

Information


- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1 This question is about reactions of metals.

Figure 1 shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid.

Figure 1

0 1.1	What is the order of d	ecreasing reactivity of these four metals?	[1 mark]
	Tick (✓) one box.		[
	Zn Ca Cu Mg		
	Ca Cu Mg Zn		
	Cu Zn Ca Mg		
	Ca Mg Zn Cu		

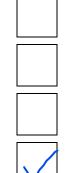
	A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.	1
0 1.2	Name two variables that must be kept constant.	[2 marks]
	1 mass (of metal / element)	
	• surface area (of metal /	
	element)	
0 1.3	What is the independent variable in this reaction?	[1 mark]
	type of) metal / element	
0 1.4	Predict the reactivity of beryllium compared with magnesium.	
	Give a reason for your answer.	
	Use the periodic table.	
	(beryllium is) less reactive	[2 marks]
	Reason • greater attraction between nucleus and outer electrons	
0 1.5	A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm ³ Calculate the concentration of hydrogen chloride in g per dm ³	
	$\frac{50}{1000 \text{ (dm3)}}$ = 0.05 (dm3)	[3 marks]
	(3.2	
	0.05)	g per dm ³

Turn over ▶

Do not write outside the box

0 2	This question is about salts.	
	Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.	
0 2.1	Give the state symbol for ammonium nitrate solution.	[1 mark]
	aq	
0 2.2	What is the formula of nitric acid?	[1 mark]
	Tick (✓) one box.	
	HCl	
	HNO ₃	
	H ₂ SO ₄	
	NH₄OH	
0 2.3	Ammonia gas dissolves in water to produce ammonia solution.	
	Ammonia solution contains hydroxide ions, OH ⁻	
	A student adds universal indicator to solutions of nitric acid and ammonia.	
	What colour is observed in each solution?	[2 marks]
	Colour in nitric acid red	
	Colour in ammonia solution purple or blue	

0 2 . 4


The student gradually added nitric acid to ammonia solution.

Which row, $\bf A$, $\bf B$, $\bf C$ or $\bf D$, shows the change in pH as the nitric acid is added until in excess?

[1 mark]

Tick (✓) one box.

		pH of ammonia solution at start	pH after addition of excess nitric acid
4	A	10	7
ı	В	2	10
(С	7	1
ı	D	10	2

0 2 .

5

Calculate the percentage by mass of oxygen in ammonium nitrate (NH₄NO₃).

Relative atomic masses (A_r) : H = 1

H = 1 N = 14

O = 16

Relative formula mass (M_r): $NH_4NO_3 = 80$

[3 marks]

3 x 16 or 48

48	×100
80	

Percentage by mass of oxygen = ______%

Question 2 continues on the next page

0 2 . 6

Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water.

You do **not** need to write about safety precautions. **Indicative content**

[6 marks]

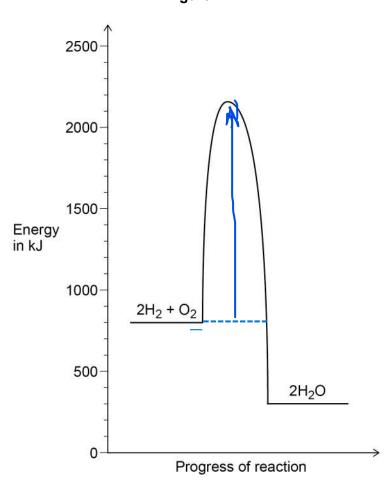
Steps

- use a suitable container eg test tube
- use insulation
- add water
- measure the initial water temperature (with a thermometer)
- add stated mass eg 1g or 1 spatula
- stir (to dissolve the solid)
- measure the final (allow lowest or highest) temperature of solution
- calculate the temperature difference or determine graphically
- repeat with different masses
- repeat with the same volume of water

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the



- 0 3 This question is about oxygen.
- 0 3 . 1 Hydrogen reacts with oxygen.

$$2\,H_{2}\,(g)\,\,+\,\,O_{2}\,(g)\,\,\rightarrow\,\,2\,H_{2}O\,(g)$$

Figure 2 shows the relative energies of the reactants and products at a certain temperature.

Figure 2

Label the activation energy on Figure 2.

[1 mark]

0 3 . 2

Determine the overall energy change for the reaction between hydrogen and oxygen shown in Question **03.1**

Use Figure 2.

reads levels of reactants (800

[2 marks]

kJ) and products (300 kJ)

(800 - 300)

Energy change = 500 kJ

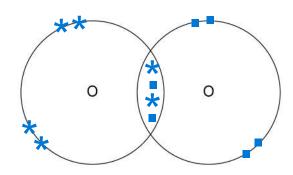

0 3 . **3** Oxygen is in Group 6 of the periodic table.

Figure 3 shows the outer energy levels in one molecule of oxygen (O_2) .

Draw the electrons in the outer energy levels in Figure 3.

[2 marks]

Figure 3

Question 3 continues on the next page

0 3 . 4

The equation shows the decomposition of hydrogen peroxide.

$$2 \text{ H-O-O-H} \rightarrow 2 \text{ H-O-H} + \text{ O=O}$$

Table 1 shows the bond energies.

Table 1

Bond	0-0	O=O	O–H
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.

$$(bonds broken = (4x463) + (2x138) = 2128$$

[3 marks]

(bonds made)

$$(4\times463) + (496) = 2348$$

(energy change = bonds broken – bonds made)

$$(2128 - 2348)$$

0 4	This question is about elements in the periodic table.	
0 4.1	What order did scientists use to arrange elements in early periodic tables?	[1 mark]
	atomic weight	
0 4.2	In the early periodic tables some elements were placed in the wrong groups. Mendeleev overcame this in his periodic table. Give one way Mendeleev did this. left gaps / spaces	[1 mark]

Question 4 continues on the next page

Table 2 shows the boiling points of fluorine, chlorine and bromine.

Explain why the boiling points in **Table 2** are low.

Table 2

Element	Boiling point in °C
Fluorine	-186
Chlorine	-34
Bromine	+59

		[2 marks]
	weak forces between the molecules	
	or	
	weak intermolecular forces	
	(so) little energy required to overcome / break the between molecules	e forces
0 4.4	Explain the trend in the boiling points in Table 2 .	[3 marks
	(the) molecules get larger going down the group	•
	(so the) forces between the molecules increase	
	(so the) intermolecular forces increase	

(so the) boiling points increase going down the group

Do not write outside the

0 4 . 5 Explain why neon is unreactive.

Give the electronic structure of neon in your answer.

[2 marks]

2,8

(so) stable arrangement of electrons

0 4 . 6 How many atoms are there in 1 g of argon?

The Avogadro constant is 6.02×10^{23} per mole.

Relative atomic mass (A_r) : Ar = 40

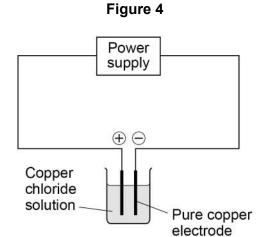
[2 marks]

$$0.025 \times 6.02 \times 10^{23}$$

1.51 × 10²²

Number of atoms in 1 g = 1.51×10^{22}

11

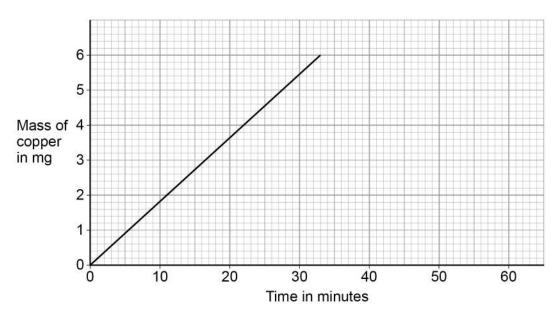

Turn over for the next question

0 5	This question is about electrolysis.
0 5 . 1	Some metals are extracted from molten compounds using electrolysis.
	Why is electrolysis used to extract some metals? [1 mark]
	metal is too reactive to be extracted using carbon
0 5.2	Aluminium is produced by electrolysis of a molten mixture.
	What two substances does the molten mixture contain? [2 marks]
	aluminium oxide
	2 cryolite
0 5 . 3	Copper and chlorine are produced when molten copper chloride is electrolysed.
	Complete the half equation for the reaction at each electrode.
	[2 marks]
	Half equation at negative electrode
	C.,2+
	Cu^{2+} \rightarrow
	Half equation at positive electrode
	$2 \text{ Cl}^- \rightarrow$

Figure 4 shows the apparatus a student used to electrolyse copper chloride solution.

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- compared the mass deposited with the expected value.
- 0 5. 4 Suggest **two** reasons why the mass deposited was different from the expected value. [2 marks]
 - 1 concentration / volume of solution was different
 - 2 impurities in solution


Question 5 continues on the next page

0 5 . 5

Figure 5 shows the expected mass of copper produced each minute.

Determine the expected mass of copper after 24 hours.

Use Figure 5.

[3 marks]

reading of mass at stated time

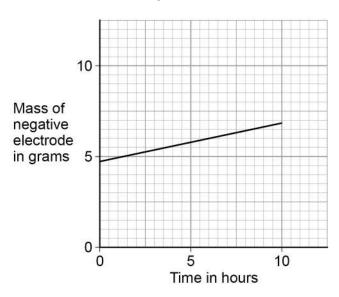
factor from time to 24 hours correct evaluation

alternative approach:

__calculates the gradient (1)_

gradient x time in minutes in 24 hours (1)

_correct evaluation (1)


Mass = mg

Silver nitrate solution is electrolysed.

Figure 6 shows the change in mass of the negative electrode over 10 hours.

Figure 6

0 5 6 Determine the mass of the negative electrode at the start of the experiment.

Use Figure 6.

[1 mark]

4.75 (g)

0 5 . 7 Calculate the gradient of the line in Figure 6.

Give the unit.

[3 marks]

(working)

Y increase and X increase measured from graph

and substitution into Y increase X increase

correct evaluation

Gradient

Unit (units) g/hour

0 6	This question is about sodium.
0 6 . 1	Sodium reacts with chlorine.
	What is the balanced equation for the reaction?
	Tick (✓) one box. [1 mark]
	Na + Cl → NaCl
	$Na + Cl_2 \rightarrow NaCl_2$
	2 Na + Cl ₂ \rightarrow 2 NaCl
	2 Na + Cl → Na ₂ Cl
0 6.2	Hot sodium is put in a gas jar of chlorine.
	Describe the observations made before, during and after the reaction. [3 marks]
	Before reaction silver solid / liquid / metal
	During reaction yellow flame
	During reaction
	During reaction yellow flame white solid / powder After reaction
	white solid / powder

Do not write outside the box

0 6.3	Explain why sodium is less reactive than potassium. [4 mail	rks]
	sodium has fewer energy levels / shells	
	outer electron / shell is closer to nucleus	
	or outer electron / shell is less shielded	
	(so) greater attraction between nucleus and outer electron	 <u>/ s</u> hell
	(so) outer electron is less easily lost.	

Question 6 continues on the next page

Do not w	rite
outside	the
box	

Compare the structure and bonding in sodium of	hloride and hydrogen chloride. [6 mai
Indicative content	
sodium chloride	hydrogen chlo
differences in	
bonding	
ionic	covalent
metal & non-metal two non-metals	
transferring electrons sharing electrons	
ions (Na+ and CI-) molecules	
charged particles neutral or no overall charge	
differences in	
structure	
regular i rregular / random similarities in bonding full shells or stability full shells or stability	
(transferring) electrons (sharing) electrons	
strong bonds strong (covalent) bonds	
energ a <u>ernae energ (certaiern) ternae</u>	
similarities in	
structure (electrostatic) forces (intermolecular) forces	

END OF QUESTIONS

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/Jun19/8464/C/1H