Please check the examination details be	low before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate N	lumber	
Pearson Edexcel Leve	l 1/Lev	el 2 GCSE (9–1)
Tuesday 13 June 20	23	
Morning (Time: 1 hour 10 minutes)	Paper reference	1SC0/2CF
Combined Science PAPER 5	:e	♦
		Foundation Tier
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

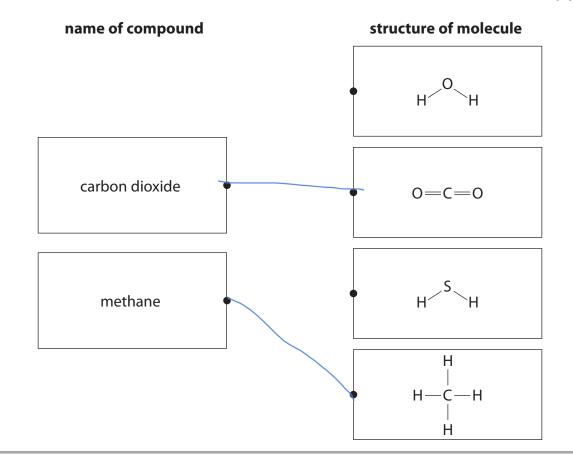
1 Figure 1 shows the structure of a molecule of each of four compounds, A, B, C and D.

compound A	compound B	compound C	compound D
нОн	O=C=0	H S H	H H—C—H H

Figure 1

(a) The formula of a molecule of compound $\bf A$ is H_2O .

Give the formula of a molecule of compound **D**.

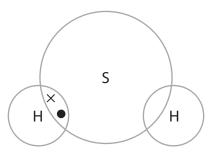

(1)

CH4.....

(b) The names of two of the compounds in Figure 1 are shown below.

Draw one straight line from each name to the structure of a molecule of that compound.

(2)


(c) Figure 2 shows information about the number of electrons in the outer shell of each of the different atoms in a molecule of compound **C**.

symbol of element	number of electrons in outer shell of the atom
Н	1
S	6

Figure 2

Use the information in Figure 2 to complete the dot and cross diagram for a molecule of compound **C**.

shared pair rest of molecule correct

(d) The atomic number of phosphorus, P, is 15.

One atom of phosphorus has a relative atomic mass of 31.

Give the number of protons, neutrons and electrons in this atom of phosphorus.

(3)

number of protons = ...15

number of neutrons = ...16

number of electrons = 15

(Total for Question 1 = 8 marks)

2 A student investigated the temperature change that took place when different salts were dissolved in water.

The student used the following method.

- **step 1** pour 50 cm³ of water into a polystyrene cup and record the temperature of the water
- step 2 find the mass of an empty boiling tube
- **step 3** add 2 spatula measures of a salt to the boiling tube and find its new mass
- **step 4** add the salt to the water
- **step 5** stir the mixture and record the temperature after 2 minutes.

Figure 3 shows the apparatus used.

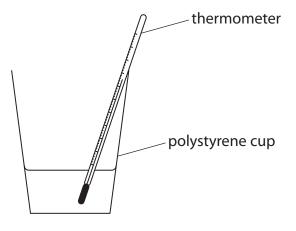


Figure 3

(a) For steps 2 and 3, the student obtained the mass measurements shown in Figure 4 for the first salt.

mass of empty boiling tube in g	22.52
mass of boiling tube + 2 spatula measures of a salt in g	24.16

Figure 4

Use the mass measurements in Figure 4 to calculate the mass of salt, in grams, added to the water.

(1)

mass of salt =
$$.24.16 - .22.52 = ...$$
 g
1.64 (g)

(b) The student repeated the method for three different salts, **A**, **B** and **C**.

The same mass of each salt was used.

Figure 5 shows the temperature readings obtained for the three different salts.

salt	starting temperature of the water in °C	temperature of the mixture after 2 minutes in °C	temperature change in °C
Α	20.5	25.6	+5.1
В	20.5	19.8	-0.7
С	20.5	29.2	

Figure 5

(i) Calculate the temperature change for salt **C**.

Include a sign to show if the temperature change is an increase or a decrease.

(2)

temperature change =°C

(ii) Explain which salt produces the biggest exothermic change.

(2)

- salt with larger positive temperature rise in part (i)
- shows the {largest/highest} temperature
- (c) Explain why a polystyrene cup is a better container to use for this investigation than a glass beaker.

(2)

polystyrene is an insulator / poor conductor (of heat)

• reduces {heat/energy} {loss/transfer}

(Total for Question 2 = 7 marks)

3 A scientist produced the information in Figure 6 about the Earth's atmosphere and the Earth's average surface temperature.

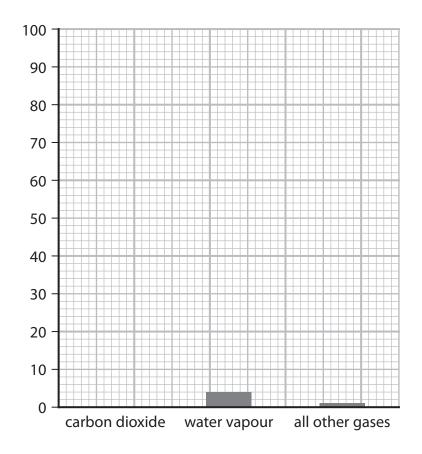

Earth's atmosphere 3 billion years ago		Earth's atmosphere today	
gas	%	gas	%
carbon dioxide	95	nitrogen	78.00
water vapour	4	oxygen	21.00
all other gases	1	carbon dioxide	0.04
		all other gases including water vapour	0.96
average surface temperature 3 billion years ago		average surface temperature today	
above 400°C		20℃	

Figure 6 bar on bar chart for carbon dioxide to 95 %

(a) Complete the bar chart showing the composition of the Earth's atmosphere 3 billion years ago by adding a bar to show the percentage of carbon dioxide.

(1)

	ha	decreased	has increased	has stayed the same	
Ov	er th	e past 3 billion ye	ears the average surface	temperature of the Earth	
H	las de	creased			
		th's atmosphere i apour than today	3 billion years ago contai y's atmosphere.	ined much more	
Ex	plain	what happened	to the water vapour.		(2)
		osphere / water			
		condensed / for / rain} formed	med clouds		
(c) Scient	ists tl	nink that the dec	rease in percentage of ca	arbon dioxide was partly du	ıe
to this (i) Ca pro Giv	gas l rbon oduce ve the	peing used in the dioxide was used ed oxygen. e name of the pro	rease in percentage of ca e growth of primitive plan d in the growth of primit ocess in plants that takes	ive plants and	ue
to this (i) Ca pro Giv	gas l rbon oduce ve the	oeing used in the dioxide was used ed oxygen.	e growth of primitive plan	ive plants and	ue (1)
to this (i) Ca pro Giv	gas l rbon oduce ve the	peing used in the dioxide was used ed oxygen. e name of the pro	e growth of primitive pland in the growth of primit occess in plants that takes	ive plants and	
to this (i) Ca pro Giv pro	gas l rbon oduce ve the oduce	peing used in the dioxide was used ed oxygen. e name of the pro es oxygen.	e growth of primitive pland in the growth of primit occess in plants that takes	nts. ive plants and in carbon dioxide and otosynthesis	(1)
to this (i) Ca pro Giv pro	gas larbon oduce ve the oduce	dioxide was used occupied oxygen. e name of the proses oxygen. of the following to	e growth of primitive planed in the growth of primit occess in plants that takes	nts. ive plants and in carbon dioxide and otosynthesis gas is oxygen?	
to this (i) Ca pro Given pro (ii) Wh	gas larbon oduce ve the oduce	dioxide was used oxygen. e name of the proses oxygen. of the following to put a lighted spl	e growth of primitive planed in the growth of primit occess in plants that takes Phasests would show that a g	nts. ive plants and in carbon dioxide and otosynthesis gas is oxygen? urns with a pop	(1)
to this (i) Ca pro Giv pro (ii) WI	gas larbon oduce ve the oduce hich o	dioxide was used oxygen. e name of the proses oxygen. of the following to put a lighted splen.	e growth of primitive planed in the growth of primit occess in plants that takes Pheests would show that a golint into the gas and it but	nts. ive plants and in carbon dioxide and otosynthesis gas is oxygen? urns with a pop elights	(1)

- (d) Many people are concerned by the increasing amount of carbon dioxide in the atmosphere.
 - (i) The amount of carbon dioxide in the atmosphere is measured in parts per million (ppm).

Figure 7 shows the amount of carbon dioxide in the atmosphere in June 2001 and in June 2021.

	amount of carbon dioxide in ppm
June 2001	371.17
June 2021	416.56

Figure 7

Calculate the increase in the amount of carbon dioxide, in ppm, from June 2001 to June 2021.

Give your answer to the nearest whole number.

(416.56 – 371.17 =) 45.39 = 45 (1) (to nearest whole number)

increase in amount of carbon dioxide =ppm

(ii) State **one** possible effect that could be caused by the increasing amount of carbon dioxide in the atmosphere.

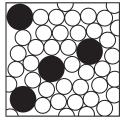
(1)

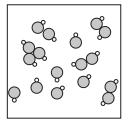
(2)

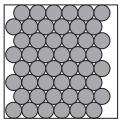
eg global warming / {ice caps/glaciers} melting / changing habitats / rising sea levels

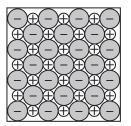
(Total for Question 3 = 9 marks)

4 Chlorine is an element in group 7 of the periodic table.	
(a) What name is given to group 7 of the periodic table?	
A alkali metals	(1)
C noble gases	
D transition metals	
(b) Chlorine reacts with sodium to form sodium chloride.	
(i) Write the word equation for this reaction.	4.5
	(2)
Left side: sodium + chlorine → sodium chloride	
(ii) Chlorine, Cl ₂ , is made of simple molecules.	
Describe what is meant by the term molecule .	
two or more) atoms joined together	(2)
• by a {covalent bond / shared pair of electrons	
(iii) Sodium, like all metals, conducts electricity.	
Explain how sodium conducts electricity.	
	(2)
electrons • (electrons) {can move / are delocalised /	
can pass through / can flow}	
(iv) Sodium chloride contains sodium ions, Na^+ , and chloride ions, Cl^- .	
Use this information to state the formula of sodium chloride.	
	(1)
NaCl / Na+Cl-	




(v) Sodium chloride is made of a giant structure of ions.


Which diagram shows the arrangement of particles in sodium chloride?



× D

(vi) Sodium chloride solution conducts electricity.

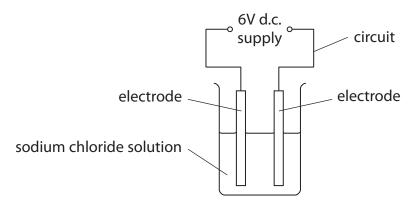


Figure 8

State what can be put into the circuit in Figure 8 to show that a current is flowing.

(1)

ammeter / (light) bulb / lamp

(c) Figure 9 shows a flow diagram of how hydrochloric acid can be made.

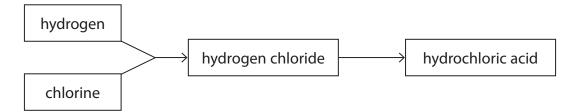


Figure 9

(i) Balance the equation for the reaction between hydrogen and chlorine to form hydrogen chloride.

(1)

$$H_2 + Cl_2 \rightarrow ...2$$
.....HCl

(ii) State how hydrogen chloride can be converted into hydrochloric acid.

(1)

{dissolve in / add} water

(Total for Question 4 = 12 marks)

5 A student used the apparatus shown in Figure 10 to investigate the reaction between marble chips and dilute hydrochloric acid.

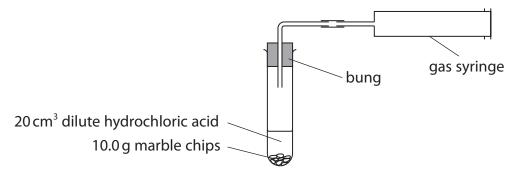
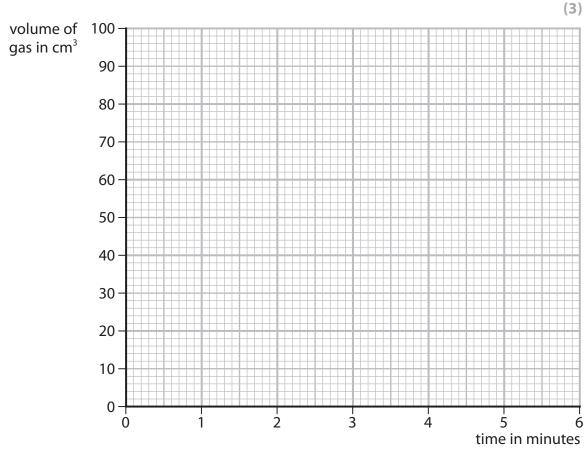


Figure 10


The student recorded the volume of gas every minute as shown in Figure 11.

time in minutes	0	1	2	3	4	5	6
volume of gas in cm ³	0	52	78	91	97	100	100

Figure 11

(a) On the grid, plot the results shown in Figure 11.

Draw a curve of best fit.

6 or 7 points plotted correctly or 4 or 5 points plotted correctly

4 or 5 points plotted correctly best fit curve starting at (0,0)

(b) Rate of reaction can be calculated using

rate of reaction =
$$\frac{\text{volume of gas produced in 1 minute}}{\text{1 minute}}$$

Figure 12 shows the rates of reaction calculated from the results of this experiment.

The rate of reaction for the time interval 2 to 3 minutes is missing.

time interval	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5
	minute	minutes	minutes	minutes	minutes
rate of reaction in cm³ min ⁻¹	52	26	13	6	3

Figure 12

(i) Calculate the rate of reaction for the time interval 2 to 3 minutes.

(1)

13

rate of reaction =
$$\dots$$
 cm³ min⁻¹

(ii) State and explain what happens to the rate of reaction as the acid reacts with the marble chips in this experiment.

(3)

rate of reaction decreases / reaction is slower

- as {reactants /acid/ marble chips} are used up
 - so less frequent collision

(c) The student repeated the experiment using the same volume of acid and the same mass of marble chips but used smaller marble chips.

All other conditions remained the same.

The student found that the reaction with the smaller marble chips was faster to start with but produced the same volume of gas.

Using this information, draw a line on the grid to show the results for the reaction with the smaller marble chips.

Label this line 'C'.

initial line steeper and to the leftline levelling off at 100 cm3before 5 minutes

(2)

(d) Which of the following changes would make the reaction faster?

(1)

- use a larger boiling tube X
- use a larger volume of the dilute acid X
- X use a more concentrated acid
- use a smaller boiling tube X
- (e) State what could be used to measure time in the investigation.

(1)

stopwatch / clock

(Total for Question 5 = 11 marks)

6 Figure 13 shows some information about some group 1 metals.

group 1 metal	atomic number	relative atomic mass
lithium	3	7
sodium	11	23
potassium	19	39
rubidium	37	85
caesium	55	133

Figure 13

(a) Explain, in terms of their electronic configurations, why these metals are placed in group 1 of the periodic table.

(2)

1 e	lectr	on
-----	-------	----

in outer shell(s)

(b) Which row shows two correct properties of group 1 metals?

(1)

		properties of group 1 metals					
X	A	compounds are white in colour	high density				
X	В	low melting points	compounds are blue in colour				
\bowtie	C	soft enough to be cut by a knife	low melting points				
X	D	high density	conduct electricity				

(c) The word equation for the reaction of potassium with bromine is

Add the missing state symbol and balance the equation for this reaction.

(2)

$$R_2$$
 $K(...s$ $K(s)$ R_2

(d) A sample of potassium contains three isotopes, potassium-39, potassium-40 and potassium-41.

Explain the meaning of the term isotopes.

(2)

- (atoms) {of same element / with same number of protons} / all contain 19 protons / same atomic number
- different number of neutrons / different mass number / have 20, 21, 22 neutrons
 - *(e) The reactivity of the group 1 metals increases from lithium to caesium.

Often, teachers demonstrate the reactions of lithium, sodium and potassium with water.

These reactions can be used to predict the behaviour and reactions of rubidium and caesium with water.

Describe the reactions of each of the group 1 metals with water including the predicted behaviour and reactions of rubidium and caesium.

You may use word equations in your answer.

(6)

- · lithium, sodium, potassium float on water
- metals move around on the water
 - bubbles form / fizz / effervescence
- hydrogen / gas produced
 - metal hydroxide solution formed
- metal + water → metal hydroxide + hydrogen
 - purple solution formed if universal indicator present in the water
- lithium slowly disappears
 - · sodium forms a ball / melts
- sodium disappears quickly
 - potassium burns with a lilac flame
- potassium disappears very quickly
 - rubidium much more reactive (than potassium)
- rubidium burns with coloured flame
 - caesium explosive / more reactive than rubidium

(Total for Question 6 = 13 marks)
(Iotal Ioi Question 0 – 13 marks)
TOTAL FOR PAPER = 60 MARKS

BLANK PAGE

BLANK PAGE

The periodic table of the elements

0 He helium	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
7	19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84
ည	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	Sn tin 50	207 Pb lead 82
ო	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
	59 nickel 28	106 Pd palladium 46	195 Pt platinum 78		
	59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77		
1 hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76
	55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75		
	relative atomic mass atomic symbol name atomic (proton) number	52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	
Key			51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
			48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72
	45 Sc scandium 21	89 × yttrium 339	139 La* lanthanum 57		
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontum 38	137 Ba barium 56
-	7 Li Ilthium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.