	ails below	before ente	ring your can	didate information
Candidate surname			Other name	S
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	Centre	Number		Candidate Number
Thursday 16	Ma	y 20	19	
Morning (Time: 1 hour 10 minute	es)	Paper R	eference 1	SC0/1CF
Combined Scie	nce			
Paper 2: Chemistry 1				
Paper 2: Chemistry 1			F	oundation Tier

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 The three states of matter are solid, liquid and gas.
 - (a) What is the name of the change of state when a liquid changes into a solid?

(1)

- A condensation
- B evaporation
- **C** freezing
- D melting
- (b) A gas was left to cool to form a liquid.

Figure 1 shows how the temperature of the substance changed with time.

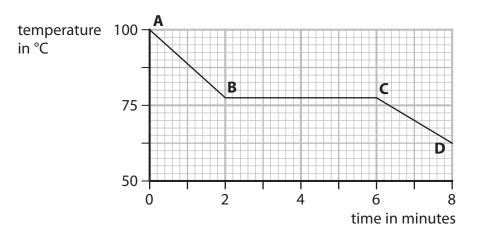


Figure 1

From **A** to **B** the substance is a gas.

From **C** to **D** the substance is a liquid.

(i) State the time when the gas first started to form a liquid.

(1)

2 / two (minutes)

minutes

(ii) Calculate the number of minutes it took from the gas first starting to form a liquid until the substance was completely liquid.

(1)

6 - 2 (= 4) / 4 / four (minutes)

..... minute

(c) Figure 2 shows the melting points and boiling points of four substances, W, X, Y and Z.

substance	melting point in °C	boiling point in °C		
W	-220	-188		
X	-101	-34		
Y	-7	59		
Z	114	184		

Figure 2

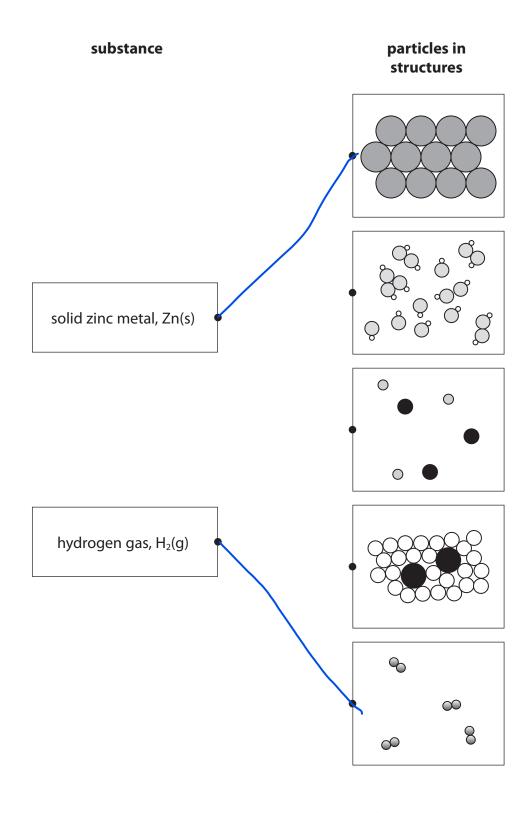
Using the information in Figure 2

(i) give the letter of the substance that is a solid at 20 °C

(1)

Z

(ii) give the letter of a substance that is a liquid at 50 °C


(1)

У

(d) The diagrams below show particles in five different structures. The different circles show different particles.

Draw one straight line from each substance to its structure.

(2)

(Total for Question 1 = 7 marks)

- 2 Mixtures of substances can be separated using different techniques.
 - (a) Which of the following is a mixture of substances?

(1)

- 🔀 🗛 air
- B carbon dioxide
- C gold
- D titanium
- (b) Figure 3 shows the apparatus that a student set up to obtain pure water from ink.

 There are three mistakes in the way the apparatus has been set up.

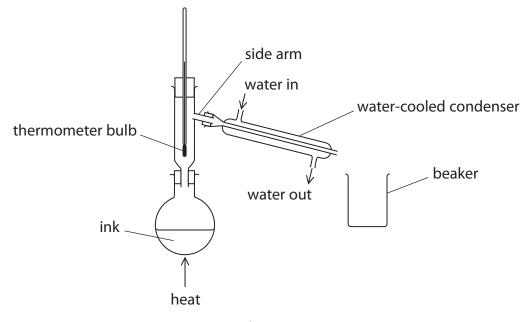


Figure 3

(i) One mistake is that the bulb of the thermometer is too low.

The bulb of the thermometer should be level with the side arm.

Give a reason why the bulb of the thermometer should be level with the side arm.

(1)

to measure the temperature of the {water vapour / steam / gas} passing into the condenser

(ii) State **one** other mistake in Figure 3.

(1)

beaker not under condenser exit / water entering condenser in wrong place / water flow in condenser wrong way round

(c) Paper chromatography is used to separate the substances in five different food colourings, **P**, **Q**, **R**, **S** and **T**.

Figure 4 shows the chromatogram at the end of the experiment.

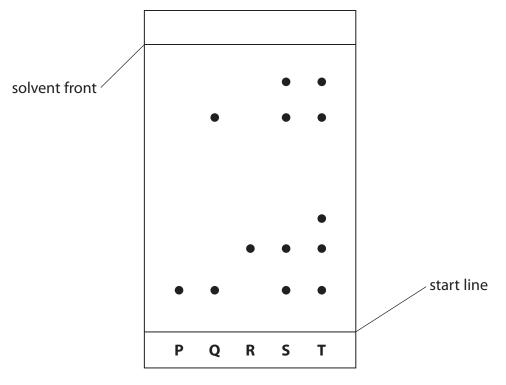


Figure 4

- (i) The steps needed to carry out the chromatography experiment are listed below. They are not in the correct order.
 - 1 leave the solvent to rise up the paper
 - 2 put solvent in the beaker
 - **3** draw a start line on the piece of paper
 - 4 place the paper in the beaker
 - 5 remove the paper when the solvent is near the top
 - 6 put small spots of the food colourings on the start line

List the steps in the correct order.

The first two steps have been done for you.

(2)

2 6 4 1 5

(ii) Explain, using Figure 4, which food colouring contains the greatest number of coloured substances.

(2)

An explanation linking

- mixture T (1)
- because it gives {the greatest number / 5} spots (1)
- (iii) During chromatography of the food colourings, the solvent front moved 8.00 cm and the food colouring **R** moved 2.30 cm.

Calculate the R_f value for food colouring **R**. Give your answer to two significant figures.

(2)

Rf =
$$2.30$$
 (= 0.2875) (1)
8.00
= 0.29 (

$$R_f$$
 value = 0.29

(Total for Question 2 = 9 marks)

- 3 (a) The reactivity of copper, magnesium and zinc was investigated. Each metal was placed separately in dilute hydrochloric acid. The amount of effervescence was observed.
 - (i) The same mass of metal was used in each experiment.
 Which piece of apparatus should be used to find the mass of metal used?

(1)

- A a balance
- **B** a pipette
- **C** a stopwatch
- **D** a thermometer
- (ii) State **two** variables, apart from the mass of the metals, that should be controlled in this investigation.

(2)

- 1 (same) volume of acid (1)
- (same) concentration of acid (1)
 - (iii) Magnesium produces the most vigorous effervescence. Copper does not produce any effervescence.

Give the reason why copper does not produce any effervescence.

copper is {not reacting / no reaction / unreactive / low in reactivity series / not reactive enough}

(iv) The magnesium reacts with dilute hydrochloric acid to form magnesium chloride solution and hydrogen gas.

The equation for the reaction is

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(\underline{\quad aq}\underline{\quad }) + H_2(\underline{\quad g}\underline{\quad })$$

Fill in the missing state symbols in the spaces provided.

(2)

- (b) Potassium carbonate reacts with dilute sulfuric acid to form potassium sulfate.
 - (i) Potassium sulfate contains potassium ions, K⁺, and sulfate ions, SO₄²⁻.

Write the formula of potassium sulfate.

(1)

K2SO4

(ii) Equal volumes of a solution of potassium carbonate were reacted separately with an excess of dilute sulfuric acid solution.

Pure dry samples of potassium sulfate were obtained from the resulting solutions.

The experiment was repeated three times using the same conditions.

The masses of potassium sulfate obtained were

experiment
$$1 = 5.22 g$$

experiment
$$2 = 5.24 \,\mathrm{g}$$

experiment
$$3 = 5.21 g$$

Calculate the mean mass of potassium sulfate obtained, giving your answer to two decimal places.

(2)

(Total for Question 3 = 9 marks)

- **4** Metals are extracted from substances naturally occurring in the Earth's crust.
 - (a) Which of these metals is usually found uncombined in the Earth's crust?

(1)

- A calcium
- **☒ B** gold
- C iron
- D magnesium
- (b) Zinc can be extracted by heating zinc oxide with carbon.

The products are zinc and carbon dioxide.

(i) Write the word equation for this reaction.

(2)

zinc oxide + carbon ----> zinc + carbon dioxide

(ii) In this reaction zinc oxide loses oxygen.

State the type of reaction taking place when an oxide loses oxygen.

(1)

reduction

- (c) Aluminium is extracted from aluminium oxide by electrolysis. Aluminium oxide is made up of ions.
 - (i) The formula of aluminium oxide is Al₂O₃.

Give the number of ions in the formula Al₂O₃.

(1)

5

(ii) Complete the balanced equation for the overall reaction by putting numbers in the spaces.

(2)

 $2\text{Al}_2\text{O}_3 \rightarrow \underline{\quad \quad } 4\underline{\quad \quad } \text{Al} \, + \underline{\quad \quad } 3\underline{\quad \quad } \text{O}_2$

(d) (i) The environmental impact of a product is assessed in a life-cycle assessment.

The stages in this assessment are given below.

They are not in the correct order.

- A disposal of the product
- **B** manufacturing the product
- **C** obtaining and processing the raw materials
- **D** using the product

List the stages of the life-cycle assessment, using letters **A**, **B**, **C**, **D**, in the correct order from start to finish.

(2)

(ii) Aluminium can be obtained by recycling aluminium waste.

Give **two** advantages of obtaining aluminium by recycling aluminium waste rather than mining the raw material and extracting aluminium from that raw material.

(2)

conserves {natural reserves of raw materials/ ore / aluminium ore} (1)

less damage to {landscape / habitats} / less {noise /dust}
 (pollution) (1)

(Total for Question 4 = 11 marks)

5 In Figure 5, the letters **A**, **E**, **G**, **J**, **X** and **Z** show the positions of six elements in the periodic table.

These letters are not the symbols of the atoms of these elements.

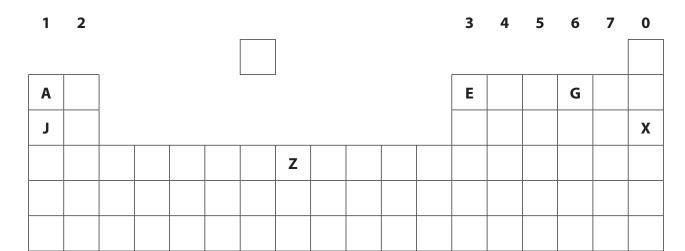


Figure 5

- (a) Using the letters A, E, G, J, X and Z
 - (i) give the letters of the **two** elements that are non-metals

any two from E, G and X

(1)

(ii) give the letters of **two** elements in period 2

any two from A, E and G

(1)

(iii) give the letter of an element that normally forms an ion with a charge of ± 1 .

(1)

Δ / Ι

- (b) Element **E** has an atomic number of 5. In a sample of **E** there are two isotopes. One isotope has a mass number of 10 and the other isotope has a mass number of 11.
 - (i) Explain, in terms of subatomic particles, what is meant by the term **isotopes**.

(2)

An explanation linking:

- (atoms with) same (number of) protons (1)
- (atoms with) different (number of) neutrons (1)

(ii) All atoms of element **E** in this sample contain

(1)

- X
 - A 5 protons
- **B** 5 neutrons
- C 6 protons
- **D** 6 neutrons
- (c) Element X has an atomic number of 18.

State the electronic configuration of an atom of element **X**.

(1)

2,8,8

(d) In an experiment, 3.5 g of element **A** reacted with 4.0 g of element **G** to form a compound.

Calculate the empirical formula of this compound. (relative atomic masses: $\mathbf{A} = 7$, $\mathbf{G} = 16$)

You must show your working.

(3)

MP1 for dividing by atomic mass

- A 3.5
- : G
 - : 4.0 (1)

7

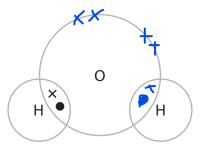
MP2 for deriving ratio from MP1

- 0.5
-)B.....
- 2

: 1 (

MP3 for ratio in MP2 to formula empirical formula A2G (1)

empirical formula of this compound =


(e) An oxygen atom has six electrons in its outer shell.

A hydrogen atom has one electron in its outer shell.

Complete the dot and cross diagram of a molecule of water, H₂O.

Show outer shell electrons only.

(2)

(Total for Question 5 = 12 marks)

BLANK PAGE

- **6** (a) Water, acidified with sulfuric acid, is decomposed by electrolysis. The water is decomposed to produce hydrogen and oxygen.
 - (i) A sample of hydrogen is mixed with air and ignited.

State what would happen.

(1)

(squeaky) pop / gas burns / water forms

(ii) Throughout the experiment the volume of hydrogen and the volume of oxygen are measured at two-minute intervals.

The results are shown in Figure 6.

time in minutes	volume of hydrogen in cm³	volume of oxygen in cm³	
0	0	0	
2	4	2	
4	8	4	
6	12	6	
8	16	8	

Figure 6

Describe, using the data in Figure 6, what the results show about the volumes of hydrogen and of oxygen produced in this experiment.

(2)

A description to include

- volumes going up: (oxygen/ hydrogen/ gas) increase (with time) / volume
 (directly) proportional to time (1)
- quantitative comparing hydrogen and oxygen: (volume of) hydrogen double (volume of) oxygen
 ORA / 2:1 ratio (1)

(b) Molten lead bromide is electrolysed.	
The products of this electrolysis are	(1)
A hydrogen and bromine	
■ B hydrogen and oxygen	
C lead and bromine	
□ lead and oxygen	
(c) Calcium nitrate and calcium carbonate are both ionic compounds.	
Calcium nitrate mixed with water behaves as an electrolyte. Calcium carbonate mixed with water does not behave as an electrolyte.	
Explain, in terms of solubility and movement of ions, this difference in behaviour.	(2)
An explanation linking:	
(calcium) nitrate (is soluble/ dissolves)/ (calcium) carbonate (is insoluble/ does no	t dissolve}
1) so ions {free to move in solution / not free in solid} (1)	

(6)

*(d) Impure copper can be purified using electrolysis.

In this electrolysis

- the anode is made of impure copper
- the cathode is made from pure copper
- the electrolyte is copper sulfate solution.

The apparatus at the start of the experiment is shown in Figure 7.

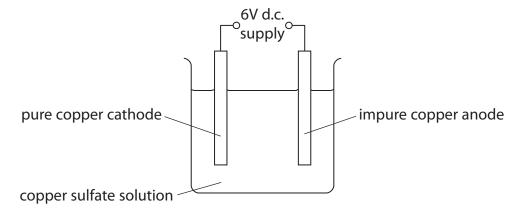


Figure 7

During the electrolysis three observations are made

- the sizes of both the anode and the cathode change
- a solid appears directly beneath the anode
- the colour of the copper sulfate solution does not change.

Explain all three observations.

(Total for Question 6 = 12 marks)
TOTAL FOR PAPER = 60 MARKS

The periodic table of the elements

0	4 He helium 2	20 Ne	40 Ar argon 18	84 Krypton 36	131 Xe xenon 54	[222] Rn radon 86
_		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9		16 O oxygen 8	32 S sulfur 16	79 Selenium 34	128 Te tellurium 52	[209] Po polonium 84
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn th 50	207 Pb lead 82
က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81
	·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78
				59 Co cobalt	103 Rh rhodium 45	192 Ir iridium 77
	1 hydrogen 1			56 iron 26	101 Ru ruthenium 44	190 Os osmium 76
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
		nass ool umber		52 Cr	96 Mo molybdenum 42	184 W tungsten 74
	Key relative atomic mass atomic symbol name atomic (proton) number			51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
		relativ ato atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafinium 72
	·			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
2		9 Be beryllium 4	24 Mg magnesium 12	Ca calcium 20	88 Sr strontium 38	137 Ba banum 56
~		7 Li lithium 3	23 Na sodium 11	39 potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

